Denis Rancourt offers this paper for online review: Radiation physics constraints on global warming

Radiation physics constraints on global warming

By Denis G. Rancourt

Abstract – I describe the basic physics of planetary radiation balance and surface temperature, in the simplest and most robust terms possible that capture the essential ingredients of planetary greenhouse warming. I show that the often repeated textbook and scientific report view that the Earth’s surface temperature would be –19C (degrees Celsius) in the absence of a planetary greenhouse effect (a 33C greenhouse effect difference) is wrong; and that an accepted calculation of the “longwave radiative forcing” by atmospheric greenhouse gases is also wrong. Our simple radiation-balance model – using only (i) the satellite-measured absolute longwave Earth emission, (ii) a present mean global surface temperature of 14C, (iii) the satellite-measured fraction of longwave absorbance due to CO2, (iv) a satellite-measured global mean surface albedo of 0.30, (v) the season-average solar constant and (vi) Kirchoff’s Law – predicts: (a) a total longwave emission atmospheric mean transmittance of {te} = 0.89, (b) a zero-greenhouse-effect Earth mean surface temperature of To = 5.5C, (c) a global mean surface emission intensity of 269 W/m2, (d) a post-industrial warming due only to CO2 increase of ΔTind = 0.56C, (e) a temperature increase from doubling the present CO2 concentration alone (without water vapour feedback) equal to ΔTdbl = 2.0C. Earth’s radiative balance determining its surface temperature is shown to be one order of magnitude more sensitive to solar irradiance and to planetary albedo/emissivity than to all atmospheric greenhouse effects combined. All the model predictions robustly follow from the starting assumptions without any need for elaborate global circulation models. A recent critique of the dominant climate change science narrative is evaluated in the light of our model. (Activist Teacher)

2 responses to “Denis Rancourt offers this paper for online review: Radiation physics constraints on global warming

  1. I have no confidence in these measurements as they do not include a planet in motion that is slowing down and can be incorporated back into time. Most radiation is angular to the planets atmosphere and is in motion along with the sun in motion.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s